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Abstract : In graph pebbling games, one considers a distribution of pebbles on

the vertices of a graph, and a pebbling move consists of taking two pebbles off

one vertex and placing one on adjacent vertex. The pebbling number, f(G), of a

graph G is the smallest m such that for every initial distribution of m pebbles on

V(G) and every target vertex x, there exists a sequence of pebbling moves leading

to a distribution with at least one pebble at x. In this paper, we determine the

pebbling number of the square of an odd cycle.
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1. Introduction

Pebbling in graphs was first studied by Chung [1]. Consider a connected graph with a fixed

number of pebbles which are nonnegative integer weights distributed on the vertices. A pebbling

move consists of taking two pebbles off one vertex and placing one pebble on an adjacent

vertex. Chung defined the pebbling number  of a vertex v in a graph G as the smallest number
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f(G, v) such that from every placement of f(G, v) pebbles, it is possible to move a pebble to v

by a sequence of pebbling moves. Then the pebbling number of a graph G, denoted by f(G), is

the maximum f(G, v) over all the vertices v in G. There are some known results regarding f(G)

[1, 2, 3, 4]. If one pebble is placed on each vertex other than the vertex v, then no pebble can

be moved to v. Also, if u is at distance d from v, and 2d - 1 pebbles are placed on u, and then

no pebble can be moved to v. So it is clear that f(G) = max{V (G), 2d - 1}, where V (G) is the

number of vertices of the graph G and d is the diameter of the graph G.

Furthermore, we know from [1] that f(K
n
) = n, where K

n
 is the complete graph on n vertices,

and f(P
n
) = 2n-1, where P

n
 is the path on n vertices. In this paper we determine the pebbling

number of the square of an odd cycle.

2. The pebbling number of the square of an odd cycle

Definition 2.1. [4] Let G = (V (G),E(G)) be a connected graph. Then G
p 

(p > 1) (the 

pth power of G) is the graph obtained from G by adding the edge (u, v) to G 

whenever 2 ≤ dist(u, v) ≤ p in G. Hence G
p
 = (V (G),E(G)  {(u, v) : 2 ≤ dist(u, v) ≤ 

p in G}. If p = 1, we define G
1
 = G. 

Since C5
2 

≡ K5 and f(K5) = 5 [1], we get f(C5
2
) = 5. Also f(P2k+r

2
) = 2

k
+r [4]. Let C4k-1: 

va1a2 ... a2k-2xyb2k-2 ... b2b1v and C4k+1: va1a2 ... a2k-2wxyzb2k-2 ... b2b1v, where k ≥ 2. 

Without loss of generality, we assume that v is the target, and p(v)=0, where p(v) 

denotes the number of pebbles on the vertex v. Let p(PA
2
) denotes the number of 

pebbles on the square of the path PA. 

Theorem 2.2. For the square of the cycle C7, f(C7
2
) = 7. 

Proof. Put one pebble each on the vertices of C7
2
, except the vertex v. Then we cannot 

move a pebble to v. Thus f(C7
2
) ≥ 7. 

Now consider the distribution of seven pebbles on the vertices of C7
2
. If one of the 

vertices of V(C7
2
)-{v, x , y} contains two or more pebbles then clearly we are done. So, 

assume that p(ai) ≤ 1, p(bi) ≤ 1 for i = 1,2. Thus p(x)+p(y) ≥ 3. Without loss of 

generality, let p(x) ≥ 2. Let us assume that p(x) = 2 or 3. If p(a1) = 1 or p(a2) = 1 or 

p(b2) =1 then we can move a pebble to v. Otherwise, p(x) ≥ 4 and hence we are done 

since d(v, x) = 2. 

Thus f(C7
2
) ≤ 7. 

The pebbling number of the square of an odd cycle



23

Theorem 2.3. For the square of a cycle C9
2
, f(C9

2
) = 9. 

Proof. Put one pebble each on the vertices of C9
2
, except the vertex v. Then we 

cannot move a pebble to v. Thus f(C9
2
) ≥ 9. 

Now consider the distribution of nine pebbles on the vertices of C9
2
. If p(a1) ≥ 2 or 

p(w) ≥ 4 then clearly we are done. So assume that p(a1) ≤ 1 and p(w) ≤ 3. For the 

same reason, we assume that p(a2) ≤ 1, p(b1) ≤ 1, p(b2) ≤ 1, p(x) ≤ 3, p(y) ≤ 3 and p(z) 

≤ 3. 

Since p(ai) ≤ 1 for all i = 1, 2 and p(bj) ≤ 1 for all j = 1, 2, we get p(w) + p(x) + p(y) + 

p(z) ≥ 5. Clearly any one of the vertex, say w, receives at least two pebbles. If p(a1) = 

1 or p(a2) = 1 or p(x) ≥ 2 then we can move a pebble to v easily. Otherwise the path 

vb1b2zy contains at least five pebbles and we are done since f(P5
2
) = 5. Similarly we 

are done if p(z) ≥ 2. So assume that p(w) ≤ 1 and p(z) ≤ 1. This implies that p(x) + 

p(y) ≥ 3. 

Let p(x) ≥ 2. Clearly we are done if p(a2) = 1. So assume that p(a2)=0. Thus p(x) + 

p(y) ≥ 4. 

Case 1: p(x) + p(y) = 4. 

Clearly both p(a1) and p(w) cannot be one and both p(z) and p(b1) cannot be one 

(otherwise one pebble could be moved to v). But any one of the above possibilities 

should be true for this case and hence we are done. 

Case 2: p(x) + p(y) ≥ 5. 

This implies that, either p(x) ≥ 2 and p(y) ≥ 3 or p(x) ≥ 3 and p(y) ≥ 2. In either case, 

we can always make a vertex (x or y) with at least four pebbles and hence we are 

done. 

In a similar way, we can move a pebble to v, if p(y) ≥ 2. 

Thus f(C9
2
) ≤ 9. 

Theorem 2.4. For the square of the cycle C11
2
, f(C11

2
) = 11. 

Proof. Let PA: va1a2a3a4 and PB: vb1b2b3b4. Note that f(PA
2
) = f(PB

2
) = 5. Without loss 

of generality, we assume that p(PA
2
) ≥ p(PB

2
). Clearly f(C11

2
) ≥ 11. 

Theorem 2.3. For the square of the cycle C9, f(C9
2
) = 9. 

Theorem 2.4. For the square of the cycle C11, f(C11
2
) = 11. 

Proof. Let PA: va1a2a3a4 and PB: vb1b2b3b4. Note that f(PA
2
) = f(PB

2
) = 5. Without loss 

of generality, we assume that p(PA
2
) ≥ p(PB

2
). Clearly f(C11

2
) ≥ 11. 
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Now consider the distribution of eleven pebbles on the vertices of C11
2
. 

Case 1: If p(x)+ p(y) ≤ 2 then  p(PA
2
) ≥ 5 and hence we are done. 

Case 2: If p(x)+ p(y) = 3 or 4 then p(PA
2
) ≥ 5. 

Note that both x and y are adjacent to a4. Since p(x)+ p(y) = 3 or 4, either p(x) ≥ 2 

or p(y) ≥ 2. Thus PA
2
 receives one more pebble from x or y and hence we are done. 

Case 3: If p(x)+ p(y) = 5 or 6 then p(PA
2
) ≥ 3. 

We can move two pebbles to a4 from x and y so that PA
2
 obtains five pebbles and 

hence we are done. 

Case 4: If p(x)+ p(y) = 7 or 8 then p(PA
2
) ≥ 2. 

This case is similar to the Case 3. We can move three pebbles to a4 from x and y 

and hence we are done. 

Case 5: If p(x)+ p(y) ≥ 9 then p(PA
2
) + p(PB

2
) ≤ 2. 

If p(x) ≥ 8 or p(y) ≥ 8 then we are done since d(v,x) = d(v,y) = 3. Otherwise both 

the vertices x and y receive at least four pebbles each or one vertex, say x, receives 

at least two pebbles (at most three pebbles) and y receives at least six pebbles. So 

we can move four pebbles to a4 and hence we are done, since d(v,a4) = 2. 

Thus f(C11
2
) ≤ 11. 

Theorem 2.5. For the square of the cycle C13
2
, f(C13

2
) = 13. 

Proof. Let PA: va1a2a3a4 and PB: vb1b2b3b4. Note that f(PA
2
) = f(PB

2
) = 5. Without 

loss of generality, we assume that p(PA
2
) ≥ p(PB

2
). Clearly f(C13

2
) ≥ 13. 

Now consider the distribution of thirteen pebbles on the vertices of C13
2
. 

Case 1: If p(w) + p(x) + p(y) + p(z) ≤ 4 then  p(PA
2
) ≥ 5 and hence we are done. 

Case 2: If p(w) + p(x) + p(y) + p(z) = 5 or 6 then  p(PA
2
) ≥ 4. 

If p(PA
2
) ≥ 5 then clearly we are done. So assume that p(PA

2
) = 4. Also assume that 

p(w) ≤ 1 and p(x) ≤ 1(otherwise, one pebble can be moved to a4 so that PA
2
 obtains 

five pebbles and hence we are done). This implies that p(y) + p(z) ≥ 3. Clearly either 

x or y contains at least two pebbles. If p(PB
2
) = 4 or p(x) = 1 then clearly we are done. 

So we assume that p(PB
2
) ≤ 3 and p(x) = 0. Thus p(y) + p(z) ≥ 5 and hence one pebble 

can be moved to a4 from the vertices z and y through the vertex x. 

Theorem 2.5. For the square of the cycle C13, f(C13
2
) = 13. 

Proof. Let PA: va1a2a3a4 and PB: vb1b2b3b4. Note that f(PA
2
) = f(PB

2
) = 5. Without loss 

of generality, we assume that p(PA
2
) ≥ p(PB

2
). Clearly f(C13

2
) ≥ 13. 

Now consider the distribution of thirteen pebbles on the vertices of C13
2
. 

Case 1: If p(w) + p(x) + p(y) + p(z) ≤ 4 then  p(PA
2
) ≥ 5 and hence we are done. 

Case 2: If p(w) + p(x) + p(y) + p(z) = 5 or 6 then  p(PA
2
) ≥ 4. 

The pebbling number of the square of an odd cycle
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If p(PA
2
) ≥ 5 then clearly we are done. So assume that p(PA

2
) = 4. Also assume that 

p(w) ≤ 1 and p(x) ≤ 1(otherwise, one pebble can be moved to a4 so that PA
2
 obtains 

five pebbles and hence we are done). This implies that p(y) + p(z) ≥ 3. Clearly either 

x or y contains at least two pebbles. If p(PB
2
) = 4 or p(x) = 1 then clearly we are done. 

So we assume that p(PB
2
) ≤ 3 and p(x) = 0. Thus p(y) + p(z) ≥ 5 and hence one pebble 

can be moved to a4 from the vertices z and y through the vertex x. 

Case 3: If p(w) + p(x) + p(y) + p(z) = 7 or 8 then  p(PA
2
) ≥ 3. 

If p(PA
2
) ≥ 5 then clearly we are done. So assume that p(PA

2
) = 3 or 4. 

Case 3.1. Let p(PA
2
) = 4. 

If p(w) ≥ 2 or p(x) ≥ 2 then we are done. So assume that p(w) ≤ 1 and p(x) ≤ 1. Thus 

p(y)+p(z) ≥ 5 and hence we are done (as in Case 2). 

Case 3.2. Let p(PA
2
) = 3. 

If p(w) ≥ 4 or p(x) ≥ 4 or (p(x) ≥ 2 and p(w) ≥ 2) then clearly we are done. So assume 

that p(w)+p(x) ≤ 4 such that one vertex (either w or x) receives at most one pebble. 

This implies that p(y)+p(z) ≥ 3. Also, note that, if p(x) = 3 then we are done. Indeed, 

we can move one pebble to x from y or z and then two pebbles could be moved to a4 

from x so that PA
2
 obtains five pebbles. So assume that p(x) ≤ 2. 

If p(w) = 2 or 3, then p(x) ≤ 1. Since, either y or z contains at least two pebbles, one 

pebble could be moved to a4 through x if p(x) =1. And also we can move a pebble to 

a4 from w and hence we are done. So assume that p(x) = 0. This implies that 

p(y)+p(z) ≥ 4. If p(y)+p(z) ≥ 5, then two pebbles could be moved to a4 from the 

vertices w, y and z. If p(y)+p(z) = 4 then p(w) = 3. Clearly we can move a pebble to 

w from the vertices y and z and hence we are done. 

If p(w) = 1 then p(y)+p(z) ≥ 4. If p(x) = 2, then we are done easily. If p(x) = 1, then 

p(y)+p(z) ≥ 5. If p(PB
2
) = 3 then two pebbles can be moved to b4 from the vertices y 

and z and hence PB
2
 obtains five pebbles, we are done. Otherwise, we can send one 

pebble each to the vertices w and x, from the vertices y and z and hence we are done. 

If p(x) = 0 then the induced subgraph <V(PB
2
) {z,y}> ≡ PB+

2
≡P7 contains at least 

nine pebbles and hence we are done since f(PB+
2
) = f(P7

2
) = 9. 

If p(w) = 0 then p(PB+
2
) ≥ 8. If p(PB+

2
) ≥ 9 then clearly we are done. If p(PB+

2
) = 8 

then p(x) =2. So we can move a pebble to z, and hence we are done. 

Case 4: If p(w) + p(x) + p(y) + p(z) = 9 or 10 then  p(PA
2
) ≥ 2. The same process in 

Case 3 can be used. 

A.Lourdusamy, C.Muthulakhmi @ Sasikala and T.Mathivanan
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Case 5: If p(w) + p(x) + p(y) + p(z) = 11 or 12 then  p(PA
2
) ≥ 1. 

Let PA+
2
 = va1a2a3a4wx. If p(w)+p(x) ≥ 8 then p(PA+

2
) ≥ 9 and hence we are done. 

Case 5.1. If p(w)+p(x) = 6 or 7 then p(y)+p(z) = 5 or 6 (or) 4 or 5. So we can move 

two pebbles (or) one pebble to x. Thus p(PA+
2
) = 9 and hence we are done. 

Case 5.2. If p(w)+p(x) = 4 or 5 then p(y)+p(z) = 7 or 8 (or) 6 or 7. 

If p(PB
2
) = 1 then we move one or two pebbles to y, so that PB+

2
 obtains nine pebbles 

and hence we are done. Otherwise p(PA
2
) = 2 and we are done since p(w)+p(x)+ 

( ) ( )
7

2

p y p z 
 

   implies p(PA+
2
) ≥ 9. 

Case 5.3. If p(w)+p(x) ≤ 3 then p(y)+p(z) ≥ 8. 

Clearly we are done if p(PB
2
) ≥ 1 or p(w) ≥ 2 or p(x) ≥ 2. Otherwise, p(y)+p(z) ≥ 9 

and hence we are done since p(PB+
2
) ≥ 9. 

Case 6: Let p(w) + p(x) + p(y) + p(z) = 13. 

Without loss of generality, p(w)+p(x) ≥ p(y)+p(z). 

Case 6.1. If p(w)+p(x) ≥ 9 then we are done since f(PA+
2
) = 9. 

Case 6.2. If p(w)+p(x) = 7 or 8 then p(y)+p(z) = 6 or 5. So we can move two pebbles 

or one pebble to x from y and z. Thus we are done since PA+
2
 obtains nine pebbles 

and f(PA+
2
) = 9. 

Thus f(C13
2
) ≤ 13. 

Theorem 2.6. For C4k-1
2
, f(C4k-1

2
) = 2

k
+1 where k ≥ 4. 

Proof. Consider the following distribution: p(x) = 2
k-1

-1, p(y) = 2
k-1

+1 and p(ai) = 

p(bi) = 0 for all i (1 ≤ i ≤ 2k-2). Clearly we can send 2
k-1

-1 pebbles to a2k-2  

or b2k-2. But d(v, a2k-2) = d(v, b2k-2) = k-1. So we cannot move a pebble to v from these 

pebbling moves. We have another one set of pebbling moves. That is, we move 
( )

2

p x 
 
   

pebbles to a2k-3 or b2k-2 and 

( )

2

p y 
 
   pebbles to a2k-2 or b2k-3. So after these pebbling  

The pebbling number of the square of an odd cycle
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moves, we get p(a2k-3) + p(a2k-2) = 2
k-1

-1 or p(b2k-3) + p(b2k-2) = 2
k-1

-1. But f(PA
2
) = 2

k-

1
+1 and f(PB

2
) = 2

k-1
+1, where PA: va1a2 ... a2k-2 and PB: vb1b2 ... b2k-2. So we cannot 

move a pebble to v in anyways. Thus f(C4k-1
2
) ≥ 2

k
+1. 

Now consider the distribution of 2
k
+1 pebbles on the vertices of C4k-1

2
. Without loss 

of generality, we assume that p(PA
2
) ≥ p(PB

2
). Also note that, if p(PA

2
) ≥ 2

k-1
+1 or 

p(a2k-2) = 2
k-1

 then we can move a pebble to v, since PA
2
 ≡ P2(k-1)+1

2
 or d(v, a2k-2) =k-1 

respectively. 

Case 1: p(x) + p(y) = 2
k
+1. 

If p(x) ≥ 2
k
 or p(y) ≥ 2

k
 then we can move a pebble to v since d(v, x) = k = d(v, y). 

Let p(x) = 2
k
-i. Then p(y) = i+1. We move 

( )

2

p x

 and 

( )

2

p y

 pebbles to a2k-2. 

If i is odd, then consider the following pebbling moves:  

 

2 1

2
12 2

2 21

2
2 2

obtains 2 pebbles and hence we are done.

k i

kk

ki

k

x a
a

y a

 








 




   

If i is even, then consider the following pebbling moves: 

 

2

2
12 2

2 2

2
2 2

obtains 2 pebbles and hence we are done.

k i

kk

ki

k

x a
a

y a










 




   

Case 2: p(x) + p(y) = 2
k
 or 2

k
-1. 

This implies that p(PA
2
) ≥ 1 and let p(aj) = 1 (1 ≤ j ≤ 2k-2). 

If j is even, then consider the following pebbling moves: 

 

( )

2

2 2 1

2 2 j( )

2

2 2

obtains 2 1 pebbles and we have p(a )=1.

p x

k k

kp y

k

x a
a

y a

 
 
 

 


 
 
 




 

 


   
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Thus we are done since the path va1a2 ... ajaj+2 ... a2k-4a2k-2 of length k-1 contains 2
k-1

 

pebbles and f(Pk) = 2
k-1

. 

If j is odd, then let d(aj, x) = i where j ≥ 3. Thus d(v, aj-1) = k-i-1, since d(v, aj) = k-i. 

If p(x) ≥ 2
i
, then we move a pebble to aj and then we send a pebble to aj-1. Now 

consider the following pebbling moves: 

We have p(x) + p(y) ≥ 2
k
 - 2

i
 -1 or 2

k
 – 2

i
. 

( ) 2

2

1 12 2
2 2

( )

2

2 2

obtains 2 2 pebbles.

ip x

k ik
k

p y

k

x a
a

y a

 
 
  

 


 
 
 




 
 


   

Since d(aj-1, a2k-2) = i, we can send 2
k-i-1

-1 pebbles to aj-1. This implies that aj-1 obtains 

2
k-i-1

 pebbles and hence we are done.  

Let p(x) < 2
i
. We take d pebbles from the vertex y so that we move 

1

2k-3

( )
2 pebbles to a .

2 4

ip x d  
  

 

1p(x)-1
That is, 2 .

2 4

id  
 

Now we have p(y)-d ≥ 2
k
-3(2

i
)+4

( )

2

p x 
 
   pebbles on the vertex y. So we can move  

1 1

2k-2

p(y)-d
2 2 pebbles to a  and hence we are done.

2

k i  
 

Indeed, consider the following pebbling moves:  

2 3

1 1 2 2 1

2 2 2 1 1

2 3 2 5 2 1 1

1
2 2 1 2 2 1 2 1 2 1

2 2 2 4 1 1

j-1

obtains 2

pebbles and d(v, a ) = k-i-1.

i i

k i k i k i k i

k k j j j k i

j

k k j j

a a a a a
a

a a a a

 

      

     


     

   

     


    

 
Let p(a1) = 1. Clearly we are done if p(x) ≥ 2

k-1
. Otherwise p(y) ≥ 2

k-1
. Then we 

consider the following pebbling moves: 

The pebbling number of the square of an odd cycle
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( ) ( ) 1

4 4
2 3 2 2

2 3( )

2

2 3

( ) 2
obtains 2 2 pebbles, ( ) 2.

4

p y p y
or

k k k

kp x

k

y a p x
a if p x

x a



  

 
 
 




 

   


   

If p(x) ≤ 1 then p(y) ≥ 2
k
-2. Let p(x) = 1. Consider the following pebbling moves:  

2

1 1

2 3
2

2 4 2 3
2 12

2 2 2 3

1 2k-3 1

obtains 2 pebbles and hence we are done 

since d(a , a ) = k-2 and p(a ) = 1.

k

k

k
k

k

k k

y x a

a

x a a





 


 

 



  

 

Let p(x) =0. If p(y) = 2
k
 then clearly we are done. So assume that p(y) = 2

k
-1. If 

p(PB
2
) = 1 then we are done since vb1b3 ... b2k-5b2k-3y or vb2b4 ... b2k-4b2k-2y of length k 

contains 2
k
 pebbles. Otherwise p(PA

2
) = 2 with p(a1) = 1. So we can move 2

k-1
-1 

pebbles to a2k-3 from y. Since p(PA
2
) = 2, there exists a vertex ah such that p(ah) = 1 

(h≠1). Let d(ah, a2k-3) = h1, if h is odd and let d(ah, a2k-2) = h2, if h is even.  

For h is odd, consider the following pebbling moves: 
2 1

122

2 3 h 1 h 1  obtains2  and we are done, since d( , ) = k-2-h .
k h k h

k ha a a pebbles a a
   

  

 

For h is even, we move 
21

2
k h 

 pebbles to ah and hence we are done since d(v, ah) = 

k-1-h2. 

In a similar way, we can reach the vertex v, if p(y) = 4m+2 or 4m+3. 

Case 3: p(x) + p(y) = 2
k
+1-p (3 ≤ p ≤ 2

k
-1). 

Case 3.1. Let p is even. This implies that p(x)+p(y) is odd. 

That is, either p(x) is odd or p(y) is odd. Without loss of generality, let p(x) is odd. Since 

p(x)+p(y) = 2
k
+1-p, we can move 2

k-1
- 2

p

 pebbles to the vertex a2k-2. We have p(PA
2
) ≥ 2

p

. 

Thus PA
2 

obtains 2
k-1 

pebbles. If p(PA
2
) ≥ 

1
2

p


 then we are done since  f(P
A

2) = 2k-1+1.
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So assume that p(PA
2
) = 2

p

. Then p(PB
2
) = 2

p

. Also, note that  

( ) 4 1 & ( ) 4 (1)
, 0 & 0.

( ) 4 3 & ( ) 4 2 (2) 2

p x a p y b p
if is even where a b

p x a p y b

       
 

          

( ) 4 1 & ( ) 4 2 (3)
, 0 & 0.

( ) 4 3 & ( ) 4 (4) 2

p x a p y b p
if is odd where a b

p x a p y b

        
 

         

Subcase (a): Let 

2 4

1

( ) .
2

k

i

i

p
p a






 

This implies that p(a2k-3)+ p(a2k-2)=0. 

Let PA+: va1a2 ... a2k-5a2k-4. Note that f(PA+
2
) = 2

k-2
+1. 

For p/2 is even, we consider the following pebbling moves: 

( ) 1 ( ) 1

4 4
2 4

2 4( ) ( ) 2

2 2
2 4

( ) ( ) 1
obtains pebbles.

4

p x p x
or

k

kp y p y
or

k

x a p x p y
a

y a

 








  


   

Thus PA+
2
 obtains 2

k-2
+ 4

p

 ≥ 2
k-2

+1 (p≥4) and hence we are done. 

For p/2 is odd, clearly we can move 

( ) ( ) 1

4

p x p y 

 pebbles to a2k-4 (see (3) & (4)). 

Thus PA+
2
 obtains 

2 2 2

4

k p p  

 ≥ 2
k-2

+1 (p≥6) and hence we are done. 

Subcase (b): 

 

2 4

2 3 2 2

1

Let ( ) ( ) ( ) .
2 2

k

i k k

i

p p
p a p a p a



 



   
 

For p/2 is even, we have both p(a2k-3) and p(a2k-2) are even or odd. 
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Suppose both p(a2k-3) and p(a2k-2) are even. 

From (1) & (2), clearly we can move 

( ) 1 ( )

4

p x p y 

 pebbles to a2k-4.Also we can 

move p/4 pebbles to a2k-4, from the vertices a2k-3 and a2k-2. Thus the vertex a2k-4 obtains 

22
2

4 4

k
kp p 

 
 pebbles and hence we are done since d(v, a2k-4) = k-2. 

Suppose both p(a2k-3) and p(a2k-2) are odd. 

Consider the following pebbling moves: 

If p(x)=4a+1 then 

If p(x)=4a+3 then 

2 3

2 2

( ) 1

1 2
2 3 2 4

( ) 1

1 2
2 2 2 4 2

2 4( ) 3

4
2 4

( ) 2

4
2 4

obtains 2 pebbles and hence we are done .

k

k

p a

k k

p a

k k k

kp x

k

p y

k

x a a

y a a
a

x a

y a







 



  










  


  






   
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For p/2 is odd, we have either p(a2k-3) or p(a2k-2) is odd. First we move 

( ) ( ) 3

4

p x p y 

 

pebbles to a2k-4. Then using the remaining pebbles from the vertices x and y, we can 

move a pebble to either a2k-3 or a2k-2 which vertex contains odd number of pebbles. 

Thus a2k-4 obtains 

2

1
( ) ( ) 3 2

2
4 2

k

p

p x p y 

 
     

 pebbles and hence we are done. 

Subcase(c):  

2 4

2 3 2 2

1

Let ( ) 1 ( ) ( ) 1.
2

k

i k k

i

p
p a p a p a



 



    
 

 Since 

2 4

1

( ) 1
k

i

i

p a





, there exists a vertex aj such that p(aj)=1 (1 ≤ j ≤ 2k-4). 

Suppose j is even (j≥2). 

2k-3 2k-2

For is odd 1is even
2 2

                    both p(a ) and p(a ) are odd or even.

p p
 


 

From (3) & (4), we obtain the following: 

If both p(a
2k-3

) and p(a
2k-2

) are odd then we can move

pebbles to a
2k-4

.

If both p(a
2k-3

) and p(a
2k-2

) are even then we can move

pebbles to a2k-4. 

Thus the path va2 ... ajaj+2 ... a2k-6a2k-4 of length k-2 contains 2
k-2

 pebbles and hence we 

are done. 

2k-3 2k-2

For is even 1is odd
2 2

                    either p(a ) or p(a ) is odd.

p p
 


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If p(x)=4a+1 then 

1 1
( ) 1 ( ) 2 2

4 4 2

p

p x p y

 
      

 pebbles to a2k-4. That is, a2k-4 

obtains 2
k-2

-1 pebbles. 

If p(x)=4a+3 then 

2

1 1
( ) 1 ( ) 2 2

2 1
4 4 2

k

p

p x p y 

 
        

 pebbles to a2k-4. Thus we 

are done since the path va2 ... ajaj+2 ... a2k-6a2k-4 of length k-2 contains 2
k-2

 pebbles. 

 Suppose p(a1) = 1. We have 
2 3 2 2( ) ( ) 1.

2
k k

p
p a p a   

 and p(x)+p(y) = 

2
k
+1-p (3≤ p ≤2

k
-1). 

2k-3 2k-2

2k-3 2k-2

For is even, we get p(a )+p(a ) is odd.
2

This implies that either p(a ) or p(a ) is odd.

p

 

2k-2 1 2 3 1Let p(a )=x  is odd. Thus ( ) 1 .
2

k

p
p a x   

 

(1) → 

2 2

( ) 2
( )

( ) 1 2

2 2

k

p y
p a

p x 

 
   

 pebbles are moved to a2k-3. 

(2) → 

2 2( ) 1( ) 3 ( ) 2
1

2 4 2

kp ap x p y   
  

 pebbles are moved to a2k-3. 

Thus a2k-3 obtains 

2 214 2 2
2 2

4

k kp a x   
 

 pebbles, since p-2x1 ≥ 2-4a and 

1≤x1≤(p/2)-1. Therefore we are done since d(a1, a2k-3) = k-2 so that a1 obtains two 

pebbles. 

Let p(a2k-3) is odd. 
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 (1) → 

2 2( )( ) 1 ( )

2 2 2

kp ap x p y 
 

 pebbles are moved to a2k-3. 

(2) → 

2 2( )( ) 1 ( ) 2

2 4 2

kp ap x p y  
 

 pebbles are moved to a2k-3. 

Thus a2k-3 obtains at least 

2 214 2 2
2 2

4

k kp a x   
 

 pebbles, and hence we are 

done since a1 obtains two pebbles. 

 In a similar way, we can prove that a2k-3 obtains 2
k-2

 pebbles from (3) & (4) so 

that a1 obtains two pebbles and hence we are done. 

 Suppose j is odd and j≥3. 

Let d(aj, x)=i. If p(x) ≥ 2
i
, then we move a pebble to aj and then we move a pebble to 

aj-1. Now x contains p(x)-2
i
 pebbles. 

2k-3 2k-2

For is even 1is odd
2 2

                    either p(a ) or p(a ) is odd.

p p
 


 

 

2k-4

1 1
( ) 2 1 2 ( ) 2

4 4 2

(1) pebbles can be moved to a .

1 1
( ) 2 1 ( ) 2

4 4 2

i

i

p

p x p y

or

p

p x p y

 
         




 


        
   
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Thus a2k-4 obtains 2
k-2

-2
i-2

-1 pebbles. Since d(aj-1, a2k-4)=i-1, we can move 

 
k-2 i-2

1

i-1

2 -2 -1 
2 1 2

2

k i i   
 pebbles to aj-1. Thus aj-1 obtains 2

k-i-1
 pebbles and hence 

we are done since d(v, aj-1)=k-i-1. 

If p(x) < 2
i
 then we take b pebbles from the vertex y such that 

1p(x)-1
2 .

2 4

ib  
 We 

move these amount of pebbles to a2k-3 so that aj obtains two pebbles and hence we 

move one pebble to aj-1. Now, the vertex y contains p(y)-b pebbles. 

2k-4

1 1
( ) 2

4 2

(1) pebbles can be moved to a .

1 1
( ) 2 2

4 2

p

p y b

or

p

p y b

 
      




 


       
   

2k-4

1 1
( ) 2

4 2

(2) pebbles can be moved to a .

1 1
( ) 2 2

4 2

p

p y b

or

p

p y b

 
      




 


       
  

If we simplify this, then a2k-4 obtains 2
k-2

-2
i-1

 pebbles when a≥1 and hence we are 

done since d(aj-1, a2k-4)=i-1. If p(x)=1 or p(x)=3 then we can move a pebble to v 

easily. 

In a similar way, we can move a pebble to v for the case p/2 is odd [using (3) and (4)] 

and j is odd (j≥3). 
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Subcase(d):  

2 4

2 3 2 2

1

Let ( ) ( ) ( ) 2 1.
2 2

k

i k k

i

p p
p a q p a p a q where q



 



       
 

For p/2 is even, we have (1) & (2). 

Suppose q is odd. Then 2

p
q

 is odd. This implies that either p(a2k-3) or p(a2k-2) is odd. 

2k-4

1
( ) 1 ( ) 2

(1)
4 4 2

pebbles can be moved to a .

1
( ) 1 ( ) 2 2

(2)
4 4 2

p
q

p x p y

p
q

p x p y

 
        




           
  

 Thus a2k-4 obtains 

2 2 2
2 2

4 4

k

p
q

p

 
    

 pebbles. That is, a2k-4 obtains 

2 2 2
2

4

k q  
  
   pebbles. Thus, PA+

2
 obtains 

2 22 2
2 2 1

4

k kq
q  

    
   

pebbles (since q≥3) and hence we are done. 

Suppose q is even. Then 2

p
q

 is even. This implies that both p(a2k-3) and p(a2k-2) 

are odd or even. 

2k-4

2
( ) 5 ( ) 2

(1)
4 4 2

pebbles can be moved to a .

2
( ) 3 ( ) 2 2

(2)
4 4 2

p
q

p x p y

p
q

p x p y

 
        




           
  
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Thus a2k-4 obtains 

2
2

4

k q


 pebbles. So PA+
2
 obtains 

22 2
2 1

4 4

k
kq

q  
    
   

pebbles (since q≥2) and hence we are done. 

For p/2 is odd, we do the similar thing as described above using (3) & (4) so that the 

square of path PA+
2
 obtains 2

k-2
+1 pebbles. 

Case 3.2:  Let p is odd. Then p(x)+p(y) is even. This implies that both p(x) and p(y) 

are odd or even. 

If both p(x) and p(y) are odd, then we do the similar methods as described in Case 3.1. 

If both p(x) and p(y) are even, then PA
2
: va1a2 ... a2k-3a2k-2 obtains 

1( ) ( ) 1 2 1 1
2 1

2 2 2 2

k
kp x p y p p p     

    
 pebbles and hence we are done. 

Case 4: Let p(x)+p(y)= 0 or 1. 

Then p(PA
2
) ≥ 2

k-1
. 

If p(PA
2
) ≥ 2

k-1
+1 then clearly we are done. If p(PA

2
) = 2

k-1 
then p(PB

2
) = 2

k-1
 and 

either p(x) =0 or p(y) = 0. Without loss of generality, let p(y)=0. So p(x)=1. If p(b2k-2) 

≥ 2 or p(b2k-3)+p(b2k-2) > 3 then we can move a pebble x and then a pebble could be 

moved to a2k-4. Thus we are done. Also, we are done, if p(b2k-3)=2 and p(b2k-2)=1. 

Finally, let p(b2k-3)≤3 and p(b2k-2)=0, then PB+
2
 contains 2

k-1
-3 ≥ 2

k-2
+(2

k-2
-3) ≥2

k-2
+1 ( 

since k≥4) and hence we are done. 

Conjecture 2.7. 

2
2 2

4k+1 4 1

2 4
For C  (k 4),  ( ) .

3

k

kf C




 
   

 
 

For k is even, consider the following distribution on C4k+1
2
: va1a2 ... a2k-2wxyz b2k-2 ... 

b2b1v: 

p(v)=0, p(ai)=0 for all i, p(bj)=0 for all j, p(w)=p(z)=3 and p(x)=p(y)= 

12 8
.

3

k 

 

A.Lourdusamy, C.Muthulakhmi @ Sasikala and T.Mathivanan



38

However the pebbling moves are made, we cannot move a pebble to v. So 

1 22 8 2 2
2 6 pebbles are not enough to put a pebble at v.

3 3

k k   
  

   

2
2

4 1

2 5
Thus, ( ) .

3

k

kf C







 

Similarly, we consider the following distribution for k is odd: 

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (4) (1989),

467-472.

[2] T.A. Clarke, R.A. Hochberg, G.H. Hurlbert, Pebbling in diameter two graphs

and products of paths, J. Graph Theory 25 (1997), 119-128.

[3] D. Moews, Pebbling graphs, J. Combin. Theory Ser. B 55 (1992), 244-252.

[4] L. Pachter, H. Snevily, B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995),

65-80.

[5] Yongsheng Ye, Pengfei Zhang, Yun Zhang, The pebbling number of squares of

even cycles, Preprint.

The pebbling number of the square of an odd cycle


